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Challenges in protein classification

1.1. Remote Remote homologhomolog detection. detection.
How much information does knowing a remoteHow much information does knowing a remote
homolog homolog provide?provide?

2.2. PhylogeneticPhylogenetic context is critical. context is critical.
ParalogsParalogs can have divergent function (so can can have divergent function (so can
orthologsorthologs……))

3. Domain structure issues.3. Domain structure issues.

4. Some fraction of the annotations in the4. Some fraction of the annotations in the
sequence databases are not exactly accurate.sequence databases are not exactly accurate.
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Function and Structure
Prediction by Homology

If you have a sequence you know nothing about,If you have a sequence you know nothing about,
find a relative.find a relative.

Given one member, find the
relatives...
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Would we recognize this member?

HomologHomolog identification and profile construction identification and profile construction
helps differentiate critical features from variablehelps differentiate critical features from variable
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Profile
generalization
allows us to

identify some
truly remote

relatives

““Evolution conserves structureEvolution conserves structure
and functionand function””

But not completely.
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Drosomycin,
Antifungal protein
Fruit Fly

1ICA
Insect Defensin A
Antibacterial protein
Flesh Fly

DefensinDefensin-related proteins-related proteins

1AYJ

Antifungal protein 1 (RS-AFP1) 
Radish

1BK8
Antimicrobial Protein 1 (Ah-Amp1)
Common horse chestnut

1AGT

Agitoxin 2
Egyptian Scorpion

(K+ channel inhibitor)

1CN2
Toxin 2

Mexican scorpion
(Na+ channel inhibitor)

Why not just use BLAST?

     Poor performance in remote
homolog detection compared to
HMM methods.

Park, J., Karplus, K., Barrett, C., Hughey, R., Haussler, D., Hubbard, T.
& Chothia, C. Sequence comparisons using multiple sequences detect
three times as many remote homologues as pairwise methods. J. Mol.
Biol. 284, 1201-1210 (1998).



6

Hidden Markov Model (HMM)Hidden Markov Model (HMM)

Delete/skip

Insert

Match

Originally used in speech recognition (Rabiner, 1986)

M   O    R     N     I     N    G

Proposed for DNA modeling (Churchill, 1989)

Applied to modeling proteins (Haussler et al, 1992)

• Multiple sequence alignment

• Identification of related family members (“homologs”)

START

END

Hidden Markov Models in Computational Biology: Applications to Protein
Modeling. Krogh, Brown, Mian, Sjolander and Haussler, J.Mol. Biol. (1994)

1TRY

TRYPSIN
Fusarium Oxysporum
(Fungus)

For homolog recognition in the Twilight Zone, we need to know:
Which positions are critical?
Where can we allow deletions or mutations?

1AGJA
(T0031)

EXFOLIATIVE TOXIN A
Staphylococcus aureus 
 (Bacteria)

16%  identity

Homolog recognition in the Twilight ZoneHomolog recognition in the Twilight Zone
CASP2 Target T0031CASP2 Target T0031
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Homolog Homolog detection isdetection is
just the first stepjust the first step……

    Correct functional classification
requires attention to evolutionary
relationships

Example 1: Orphan GPCR classificationExample 1: Orphan GPCR classification
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Step 1:
Run
BLAST

Is the
query an
FMLP
receptor?
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Or a
chemokine
receptor?

Or a C5A
Anaphylatoxin
chemotactic
receptor?

Or…?

Or a novelOr a novel
type oftype of

receptor?receptor?
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Another reason to not rely
on pairwise sequence similarity

  What if the top-scoring match is  What if the top-scoring match is
incorrectly annotated?incorrectly annotated?

Example 2: Errors in database
annotations
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The top matching BLAST hits are also
putative odorant receptors

Phylogenetic
analysis
suggests it’s
more likely
a Biogenic
Amine GPCR
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Lessons from CASP2Lessons from CASP2

Given a protein sequence (“target”), predict its most likely fold, and
produce an alignment of the target and the solved structure. Predictions
judged using structure-structure alignment (SCOP, VAST, DALI).

1. HMMs optimized for
remote homolog
detection generally
require clustering and
alignment of many
divergent sequences.

2. Alignments of new
sequences to these
HMMs can be pretty
awful.

ConflictConflict
•• For effective For effective remote homologremote homolog

detection, a profile or HMMdetection, a profile or HMM
needs information fromneeds information from
divergent family membersdivergent family members

•• Without this context, we cannotWithout this context, we cannot
differentiate critical fromdifferentiate critical from
variable positionsvariable positions

•• HMMs constructed with suchHMMs constructed with such
data provide a coarsedata provide a coarse
classificationclassification

•• But, the more variability weBut, the more variability we
introduce in training data, theintroduce in training data, the
greater the potential greater the potential noise noise atat
some positionssome positions

D S L F M K I 
D S I F M K V
D T I W M K M
D T I W M K L
D T V W M K F
D T F R K K I
D T F R K K V
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Subfamily HMMSubfamily HMM
constructionconstruction

How to build Subfamily HMMsHow to build Subfamily HMMs
(SHMMs)(SHMMs)

Share statistics between
subfamilies where there
is evidence of a common
distribution.Keep statistics separate
at positions where there
is evidence of divergent
structure.

1 2 3 4 5

6 7

D S L F M K I 
D S I F M K V
D T I W M K M
D T I W M K L
D T V W M K F
D T F R K K I
D T F R K K V

1
2
3
4
5
6
7

Improved specificity, sensitivity,
alignment accuracy
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Step 1: Form Dirichlet Mixture Step 1: Form Dirichlet Mixture PosteriorPosterior

At each position, for each subfamily, construct a
Dirichlet mixture posterior, by combining
the Dirichlet mixture prior with the amino acids
aligned at that position by that subfamily.

Mixture
coefficient

(Weighted) subfamily counts

Component
Parameters

(Weighted) subfamily counts of amino acid i

Step 2: Calculate family contributionStep 2: Calculate family contribution

Other subfamilies contribute, proportional to the probability
of the amino acids they aligned at that position, given the
revised Dirichlet mixture density.

(Weighted) counts
from subfamily s_

(Formula for computing Prob (n | _ ) are in Sjolander et al, 1996) 

D S L F M K I 
D S I F M K V
D T I W M K M
D T I W M K L
D T V W M K F
D T F R K K I
D T F R K K V
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Step 3: Compute Step 3: Compute pseudocountspseudocounts

Add the family contribution to the observed (weighted)
counts, to obtain the pseudocounts ti of amino acid i:

(Weighted) subfamily counts
for subfamily s

family 
contribution

Step 4: Compute amino acid probabilitiesStep 4: Compute amino acid probabilities

Normally, we compute amino acid probabilities by
combining a Dirichlet mixture prior with observed
counts as follows:
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Subfamily HMM PerformanceSubfamily HMM Performance
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SocratesSocrates’’ First Command: First Command:
Know ThyselfKnow Thyself

Test 1.  How accurate are subfamily HMMs at
recognizing their own training sequences?

Test 1: Training Sequence RecognitionTest 1: Training Sequence Recognition

Recognition of training sequences
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Error (in subfamily assignment): 25/9 465 (~2 6/1 000)
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Honor thy father and thyHonor thy father and thy
mothermother

Recognition and classification ofRecognition and classification of
family membersfamily members

and thy brothers and sisters
and aunts and uncles

and cousins
and second cousins

and third cousins twice removed…

Test 2: PSI-BLAST homolog detection
Average Per Family
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Subfamily Subfamily HMMsHMMs improve  improve homologhomolog detection detection
(relative to BLAST or a single HMM for the family)(relative to BLAST or a single HMM for the family)

PDB40 dataset 4,013 seqs
For each structure, homologs were
gathered and aligned using SAM-
T99 (from UCSC). A general HMM
for each family was constructed
from each alignment using Karplus
sequence weighting and Dirichlet
mixture densities. Subfamily
HMMs were created from the same
alignment. All PDB40 sequences
were scored against each cluster,
and assigned a general HMM score
and the best Subfamily HMM
(SHMM) score. Scores were sorted
by significance. Homologs are
determined by the SCOP database.

Fragments and ESTsFragments and ESTs
can be especially challengingcan be especially challenging

?
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Training sequence fragment detectionTraining sequence fragment detection

PDB40 experiments.
Fixed cutoff chosen to provide zero FP for sequence lengths <= 25
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Training Sequence Fragment Detection 
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General HMM Subfamily HMM

Specificity of fragment assignment
NLL-NULL score cutoff -18
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PDB40 homolog fragment detectionPDB40 homolog fragment detection
(HMM score and BLAST cutoffs chosen to give(HMM score and BLAST cutoffs chosen to give

zero false positives for all fragment lengths )zero false positives for all fragment lengths )

Subfamily HMM / ALL:        6.59%       9.36%      10.28%      12.16%
General HMM:            2.06           3.69           6.81           9.25
BLAST:               0.57           0.43

10               15               20           25
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FlowerPowerFlowerPower
Iterative clustering and alignment toolIterative clustering and alignment tool

Step 1: Identify putative homologs toStep 1: Identify putative homologs to
query sequence (Q)query sequence (Q)

Q

PSI-BLAST
3 iterations
E-5 cutoff
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Step 2: Select initial training setStep 2: Select initial training set

Q

Step 3: Align initial set, identify subfamilies,Step 3: Align initial set, identify subfamilies,
and build subfamily HMMs.and build subfamily HMMs.

Q
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Step 4: Identify and align new homologs.Step 4: Identify and align new homologs.

Q

1. Search with subfamily and general HMMs.
2. Accept hits above threshhold.
3. Align accepted hits to closest HMM.

Step 5: Run BETE to identify  subfamilies,Step 5: Run BETE to identify  subfamilies,
and build new subfamily HMMs.and build new subfamily HMMs.

Q
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Step 6: IterateStep 6: Iterate

QQ

until until ……

Q
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convergence.convergence.

Q

HMM performance improves with improved alignments
(Preliminary results)
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AA  TTale of ale of TTwo wo DDomainsomains

Hidden Markov models,Hidden Markov models,
Potassium channels,Potassium channels,

Excursions in the Twilight ZoneExcursions in the Twilight Zone
and some stories about startupsand some stories about startups……

 

Seq1 -96.001
Seq2 -95.134
Seq3 -94.865
Seq4 -92.754
Seq5 -92.708
Seq6 -62.343
Seq7 -52.119
Seq8 -31.560
Seq9 -31.548

MSA of family
members

Seq1 MIVSTGPKSSTALM
Seq2 MVVSTGPKS-TAIM
Seq3 MVVSSGPKSTTAVF
Seq4 MVVSSPPRS-TAIF
Seq5 MVVSGPPHS-TAII  HMM

DB Scores

Step 1: Build an HMM, and identify putativeStep 1: Build an HMM, and identify putative
homologshomologs

Putative homologs

Underlying assumption: Domain-level matches to the HMM will
cluster in specific regions, while sequence fragments will align over
HMM uniformly.
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Seq6  M    I    V    S    T    S    G 
Seq7  M    V    V    -    T    T    G
Seq8  -    -    -    -    -    S    P
Seq9  -    -    -    -    -    P    P

Step 2: Align database hits to HMMStep 2: Align database hits to HMM

>Seq6 
MIVSTSG  
>Seq7
MVVTTG
>Seq8
SP
>Seq9
PP

(Alignment to subfamily HMMs can improve results)

Step 3: Create Step 3: Create AffinityAffinity (log odds) vectors (log odds) vectors

Seq1  M    I    V    S    T    G    P
Seq2  M    V    V    S    T    G    P
Seq3  M    V    V    S    S    G    P
Seq4  M    V    V    S    S    P    P
Seq5  M    V    V    S    G    P    P

Alignment used as basis for HMM

Seq6  M    I    V    S    T    S    G
Seq7  M    V    V    -    T    T    G
Seq8  -    -    -    -    -    S    P
Seq9  -    -    -    -    -    P    P

Log likelihood
(Affinity)
vectors

Seq6 3.3  3.2  3.3  3.4  3.5  1.5  2.8
Seq7 3.3  3.1  3.3  0.0  3.5  1.6  2.8
Seq8 0.0  0.0  0.0  0.0  0.0  1.5  5.0
Seq9 0.0  0.0  0.0  0.0  0.0  3.4  5.0

Alignment of
database hits

L[s,p] = log Prob (sp | HMM)

Prob (sp)

sp = amino acid aligned by
sequence s at position p.
Define L[s,p] = 0 when sp is a gap
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

Series1

Series2

Plot LL clusters
(simple average)

6        7        8       9

Step 4: Cluster affinity vectorsStep 4: Cluster affinity vectors

Clustering of vectors
Agglomerative clustering
Euclidean distance
Cluster termination cutoff
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Calcium-activated
K+ channels

Cyclic-nucleotide-
gated K+ channels

Kinases, catabolite
gene activator
protein, PDB
structures
(1CGPA,etc.)

Analysis of CNG K+ domain structureAnalysis of CNG K+ domain structure

c-AMP/c-GMP bindingTransmembrane region

CNG K+ channel HMM positions

Catabolite Gene Activator Protein (CAP)
bound to DNA
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Database hits toDatabase hits to  Voltage-gated K+ channelVoltage-gated K+ channel

?? Unknown

Ion channels 

Similar to 
TNF-alpha-induced 
protein B12

 -427.39
-426.47
-425.46
-423.14
-422.38

-32.56
-32.50
-32.49
-32.41
-32.39
-32.34
-32.13
-32.09
-31.74
-31.55
-31.48
-31.48
-31.45
-31.28
-31.23
-31.21
-31.14

gi|3023481|sp|CIKB_RAT
gi|3913257|sp|CIKB_HUMAN
gi|348462|pir||A44838
gi|345875|pir||S31761
gi|3023495|sp|CIKA_HUMAN
                   . . .
gi|1147595|emb|CAA64176.1|
gi|3874832|emb|CAA94204.1
gi|487428|gb|AAA50173.1|
gi|3452399|gb|AAC32857.1
gi|2648884|gb|AAB89577.1|
gi|2832781|emb|CAA12645.1
gi|1255396|gb|AAA96127.1|
gi|116452|sp|P15389|CIN5_RAT
gi|3924830|emb|CAA98957.1|
gi|465874|sp|P34410|TWK8_CAEEL
gi|2315751|gb|AAB66175.1|
gi|2665784|gb|AAC29515.1|
gi|2315752|gb|AAB66176.1|
gi|2315635|gb|AAB66084.1|
gi|1707203|gb|AAB37942.1|
gi|1181413|gb|AAC96618.1|
gi|3881291|emb|CAA21749.1|
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Analysis of Voltage-gated K+Analysis of Voltage-gated K+
channels domain structurechannels domain structure

TNF-alpha-induced protein B12 and 
K+ channel tetramerization domain (1T1DA)
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HMM positions

TNF-alpha acts on K+ currentTNF-alpha acts on K+ current……but how? but how? 
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PredictionsPredictions::

� Structure of TNF-alpha
induced protein B12 is
homologous to K+ channel
tetramerization domain

� Does TNF-alpha induced
protein B12 affect K+ channel
function by interacting with
the K+ channel T1 domain?

TNF-alpha-induced protein B12 and K+ channel 
tetramerization domain (1T1DA)
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of K+ channels

Web server for high-throughputWeb server for high-throughput
functional classification of proteinsfunctional classification of proteins

3D
structure
viewer

Multiple
sequence
alignment

Attribute
data table

Phylogenetic
tree, with
subfamily
decomposition

Enable and foster virtual collaborations, scientific discovery,
correction of errors in database annotations.

Epilepsy
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Stalking disease-resistanceStalking disease-resistance
proteins in riceproteins in rice

Toll Interleukin 1 domain
PDB structure 1FYX

Joint work with Barbara Baker and Brian Staskawicz
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Plant and Animal Innate Immunity Mediated by Structurally
 Similar Receptor and Receptor-like molecules

Cytoplasmic Toll Interleukin 1

Receptor (TIR) domain

Conserved “scaffolding” proteins in cell death

C.elegans CED-4

human Nod1

human Apaf-1

tobacco N

tobacco Ntr

CARD NBS

WD40CARD

CARD LRR

LRRTIR

TIR NBS

NBS

NBS

NBS

CARD: CAspase Recruitment Domain
Nod is implicated in CrohnÅs disease
N is involved in plant Hypersensitive Response (HR)
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TIR domains missing from monocot speciesTIR domains missing from monocot species……

ÅMonocot sequences are absent from the TIR subfamilyÅ
ÅToll/Interleukin-1 receptor homology (TIR), Å was entirely
absent from monocot species in searches of both random
genomic sequences and large collections of ESTsÅ

Searching the riceSearching the rice
genome with generalgenome with general
and subfamily and subfamily HMMsHMMs
for the TIR domainfor the TIR domain……

gi|14587298 gets top score (e-12 to TIR structure)
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Alignment of rice sequence toAlignment of rice sequence to
Toll-like receptor 2 (TLR2) subfamilyToll-like receptor 2 (TLR2) subfamily

Where thereWhere there’’s TIRs TIR
there must be anthere must be an
NB-ARC domainNB-ARC domain

TIR

NB-ARC

LRR
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Alignment to APAF_Human (and homologs) NBS domain

Alignment to Alignment to HPr kinaseHPr kinase
(serine (serine kinasekinase//phosphatasephosphatase))
with P-loop/Walker motif Awith P-loop/Walker motif A

(possible structural similarity)(possible structural similarity)

Phosphate binding motif
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BLAST fails to detect TIR domainBLAST fails to detect TIR domain
homologs homologs for this sequencefor this sequence

Clustering and aligning homologsClustering and aligning homologs
with FlowerPowerwith FlowerPower

TIR domain

NBS-ARC 
domain

Walker A motif
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UC Berkeley PhylogenomicsUC Berkeley Phylogenomics

Investigation of plant disease-resistance proteinsInvestigation of plant disease-resistance proteins
Brian Brian StaskawiczStaskawicz
Barbara BakerBarbara Baker
Richard Richard MichelmoreMichelmore
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